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ABSTRACT 

We give a very short proof of the theorem concerning long strings of 
projections mentioned in the title. The nature of the proof is such that, for 
example, a result of Gul'ko follows easily. 

The following result is due to Amir and Lindenstrauss [AL] and in this form 
to Vasak IV]; see also [Gu], [M], [NW], IT] and [P]. The proof  is our own, very 
easy and self contained except for a few,very easy results in topology (see [B] 
and [En]) and classical facts about commutat ive Banach algebras (IN]). Other 
than the Stone-WeierstraB theorem, which we often make use of without 
explicitly stating, we require the following facts which are very special cases of  
variants of theorems of Banach, Stone, Naimark and Gelfand: a uniformly 
closed subalgebra of  C(K) is closed in the simple topology and if P is a 
contractive projection on C(K) (p2 = P a n d  11 P 11 = 1) so that P( lx)  -- 1Kand 
P is also an algebraic homomorphism then P is defined by a retraction on K, 
which means that there exists a continuous function r : K--* K so that r 2 = r 
and P(f)  = fo  r for all f i n  C(K). We make a quite elementary observation at 
this point. Suppose that X is a Banach space and H ___ G _ X*. Then H is 
weak* dense in G if and only if H IF is dense in G IF for each finite 
dimensional subspace FofX. We denote by den Tthe  topological density o fT ,  
that is the minimal  cardinality of a dense subset of T. In what follows K will 
denote a compact Hausdorff space and Cs(K) the algebra of continuous 
functions on K in the topology s ofpointwise convergence on K; s is also called 
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the simple topology. We denote by nden Tthe minimum cardinality of a norm 
dense subset of T when T is a subset of a Banach space. We consider only 
Hausdorff spaces. Suppose that ~ :  T ~  p(S) is an upper semicontinuous 
compact valued map. The graph 

G = ( ( t , s ) : t E T a n d s E ~ ( t ) }  

of • is a closed subset of T × S. Let E be a closed subspace of G. Then 

/'1 = (t ~ T: there exists s ~ S  so that (t, s ) ~ E }  

is a closed subset of Tand ~1 : T~ --* qT(S) defined by ~l(t) = {s ~ S  : (t, s ) ~ E }  
is an upper semicontinuous compact valued map whose graph is E. Suppose 
that f :  S ~ R  is a continuous (single valued) function. Since fo  ~l is also an 
upper semicontinuous compact valued map its graph is a closed subspace of 
T~ × R, which is a closed subspace of T × R. This proves that the function 
from the graph G o f ~  to the graph o f f °  ~ defined by mapping (t, s) to (t, f(s)) 
is a closed mapping. 

In the result below, if we replace a separable M by an arbitrary metric space 
we obtain an analogous result except that the best that can be said is that 

nden P(C(K)) = max{nden Y, den M}. 

MAIN THEOREM. Suppose that K is compact, M is a separable metric 
space, ¢P an s upper semicontinuous compact valued map from M into C(K) 
whose image T = UmEM~(m) separates the points of  K and S is an arbitrary 
subset of C(K). Then there exists a projection P defined on C(K) such that P is 
defined by a retraction on K, S c_ P(C(K)), nden P(C(K)) = max{to, nden S} 
and P(T) C T. 

PROOF. Let G c_ C(K) × M be the graph of ~. For each finite E __. K 
choose a countable subset GE ___ G such that GE is dense in G when both are 
restricted to E × M. By this, we mean that given the canonical operator 

UE: C(K)~I~(E),  then (UE ×IM)(Ge) is dense in (Ue XIM)(G). Let f l =  
max{to, nden S} < den C(K). Let AI be the smallest (norm closed and con- 
taining the constants) algebra that contains S. It follows that nden AI =<_ft. 
Choose any F~ __. K of cardinality fl that norms A~. Let A2 be the smallest 
algebra that contains 
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Then nden A 2 _--< ft .  Choose l-" t C_ F 2 that n o r m s  A 2 and card F2 _-< ft. Continue 
this for each positive integer. Let 

~ n O I T l l  

F s =  U Fn and As= U An 
n n 

Define 

G,=U(G~'E CFs} 

where the closure is taken in Cs(K) X M. Denote by U the canonical operator 
from C(K) to l~(Fs) and we assume that lo~(Fs) has the simple topology. Note 
that U X IM restricted to G is a closed mapping from G onto a closed subspace 
of l~(Fs) × M, G~ is a closed subspace of G and U × IM is one to one o n  Gl 

because U × IM is one to one on As × M and G1 c_ As × M. Therefore, U × I~, 
carries Gt homeomorphically onto a closed subspace of(U × IM)(G). We need 
only observe that (U × IM)(G~) is dense in (U X IM)(G) (remembering that 
l~(Fs) has the simple topology) and we have proved that (U × IM)(GI)= 
(U X IM)(G). Since U is a norm isometry on As and an algebraic homomor- 
phism it follows from the Stone-WeierstraB theorem that U(C(K))= U(As). 
Define the projection in the obvious way: P( f )  is the unique element of As 
such that U(P(f))= U(f). Obviously, P(T)C_ T. Since U is an algebraic 
homomorphism and II u II --  1, the remarks above show that this projection 
is defined by a retraction of K onto Fs. 

COROLLARY. Suppose that C(K) satisfies the hypothesis of the theorem 
above. Then any separable subspace of K is metrizable; in general, 

nden C(L) = den L 

for any compact subset of L [AN]. 

PROOF. This follows from the proof above. Choose any set E _C K. Let 
fl = den E be infinite and let F be a dense subset of E that has cardinality no 
more than ft. Let S be any subset of C(K) that separates the points of  F and 
nden S -- ft. If we repeat the construction above with the additional require- 
ment that F c_ F I then the spectrum of As, which is the image of the retraction 
defined above, contains E and nden As = ft. 

Suppose that we have subsets S c_ S' c_ C(K) and we construct the spaces 

S c_ As, the set Fs, the operator U and the projection P as above. Suppose that 
we also construct in an analogous manner spaces S'c_ As,, the set Fs,, with 

Fs _ Fs,, the operator Vand the projection Q andAs _ As,. Since the kernel of 
Q is a subspace of the kernel of P it follows that PQ = QP = P. With this 
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observation we may extend the Main Theorem to the following decomposit ion 
theorem, which is Vasak's extension of the Amir-Lindenstrauss theorem. It is 

only a matter of repeating the usual routine details to formulate the following 
in the case that X is a Fr6chet space; we leave this to the interested reader. 

THEOREM. Suppose that X is a Banach space, M is a separable metric space, 
an s usc compact valued map, with respect to the weak topology, from M into 

X whose image Tspans X(equivalently, separates thepoints of  X*). Let Kbe the 
unit ball of  X* in the weak* topology and consider X as canonically embedded in 
C(K). We may find an ordinal interval [l,fl],  fl is a limit ordinal, and 
projections ( P~ : 1 < a ~ fl } defined by retractions { r~ : 1 < ot < fl } on K, that is 
P , ( f )  = f o r~, such that 

(i) PI(C(K)) is separable; 

(ii) P, Pr = PvP, -- PminC,.vl ; 
(iii) Pp is the identity on C(K); 

(iv) nden P,(C(K)) < nden C(K)for all a <f l ;  
(v) den P,(C(K)) = card[l, a]; 
(vi) i f  ~, is a limit ordinal then 

Pr(C(K))= I,.J P~(C(K)) and 
a<7 

(vii) P~ ( T) C_ T for all a (hence, P, ( X) c_ X and each P~ restricted to X is also 
a projection). 

PROOF. This requires only induction on nden X = fl and is obviously true 
when fl is countable. Choose { f ,"  l < a < fl } c_ T that is dense in T. Let 
S~, = { f ~ ' n  < to} and construct Ao, and Fo, as above. In general, let S,+I = 
A,I,.J ( f r ' ?  < a +  l} and assume that F~c_F~+I where these sets are con- 
structed as above. If  2 is a limit ordinal, let 

A ~ = ( ~ U  A ~ ) a n d  F ~ =  O r~.~<~ 

The retractions exist as in the Main Theorem. 

The result above in the case that M = {m } is a one point space and O(m) is a 
weakly compact subset of X is due to Amir and Lindenstrauss as is the 
following result. 

THEOREM. I f  we have the hypothesis o f  the Main Theorem then there exist a 
set A and an operator R : C(K) ~ co(A) that is one to one. 
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PROOF. Again, this is only induction. Let (P , :  1 ~ a Eft} be the projec- 

tions defined by the retractions {r~ : 1 < a _-<fl} and let Ka = r,(K) and P0 = 0. 
Consider the following operator: 

defined by R ( f )  = (P,+ 1 - -  Pa)  f "  Using induction on fl we shall prove that the 

image of  R is in (Z, C(K,))co. Suppose this happens for any o~ < ft. From (vi) of  

the decomposition this must also happen for ft. Observe that the operator R is 
one to one. The thoerem now follows by induction also. If we assume that there 

exists an operator R, : C(K,)--, Co(A~) that is one to one, and we may assume 

that II R. II = I, then if we define 

in the obvious way then (X, R,) o R is the desired operator. 

The following is elementary. 

LEMMA. Suppose that 7"1 . . . .  , T~ are usc compact valued images of  separ- 
able metric spaces. Then the product H~ <_i<_ ~ T~ is also the usc compact valued 
image of a separable metric space and is also LindelOf. 

The following technique is very old. 

LEMMA. Suppose that C(K) satisfies the hypothesis of the Main Theorem 
above. Let E C_ K and ko E E. Then there exists a countable F C_ E such that 
ko f . 

PROOF. Let T = t, Jm tI~(m) which is Lindelofin the simple topology as well 
as T" for all n E JV. For fixed n and m in JV and k E E define 

U~,m(k) = {(fl . . . . .  f ~ ) ' ~  I f ~ ( k ) - f ~ ( k o ) l < l / m a n d f ~ T ) .  
i_<n 

Clearly, this defines a cover of T ~ that has a countable subcover 

{ U(k~,mj) : j ~Jtr}. 

Since T separates the points of  K it follows that k0E {k~,,nj : n, m , j  EJtr}. 

THEOREM (Gul'ko). I f  we have the hypothesis of  the Main Theorem then K 
is a Corson compact (hence, angelic [Pry]). In particular, an Eberlein compact 
is angelic (see [Ne]). 
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PROOF. This is also an immediate consequence of the Main Theorem and 
induction. Assume that, up to a given ordinal fl, if we have the decomposition 
{K~:og=<-a<fl} then if /~ is a measure supported on some K~ then 
{(P*+~ - P~r)/~ ~ 0 : 7 < a} is countable. If fl is the limit of a sequence of 
smaller ordinals then {(P*+t - P~r )/t ~ 0" 7 < fl} is countable. Suppose that fl 
is not such an ordinal. Clearly,/~ is a cluster point of (P*(/.t) : at <f l} ,  thus a 
cluster point of a countable subset of (F~y (/z) : a <f l} .  This means that there 
exists a 7 < f l  such that P~y (/t) = #  and the result follows from the induction 
hypothesis. The theorem follows easily by induction. 

We have not used the definition given in [V] but it is easy to see that our 
definition is formally more general; indeed, the following shows that these are 
equivalent. Another consequence of the following Proposition is that the 
continuous image of a Gul'ko compact is a Gul'ko compact. 

PROPOSITION. Let X be a Banach space and let Xe denote X with the weakest 

topology such that each extreme point o f  the unit ball of  X* is continuous on Xe. 
The following are equivalent: 

(i) X is weakly countably determined, which means that there exists a 

sequence {K,: n ~at/'} o f  weak* compact subsets o f  X** such that for every 
x E X  there exists a subsequence {K¢~,): n E ~ ' }  of  {Kn; n ~ o U }  such that 
x ~ n .  KCt.)_ X; 

(ii) there exist a separable metric space M and a map • : M --, ¢(X) such that 

O(F) is relatively compact in Xefor any compact subset F o f  M and Ut~M ~(t) 

separates the points o f  X* and 
(iii) there exists a separable metric space M and an usc compact (in the weak 

topology) valued map • defined on M such that X = UteM ~( t ). 

PROOF. If X is weakly countably determined then let 

It is completely routine to check that 

n - - I  

satisfies (iii) on M. Suppose that we have (iii). Let { Un : n E.4:} be a neighbor- 
hood basis of M and define 
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K.,p= U O(m)NB(0, p) 
m E U  n 

weak* 

where the closure is taken in X**. For a fixed x ~ X it is easy to check that 
nxEx.., K~,p is actually a subset of Xand  this verifies (i). Since (iii) implies (ii) is 

trivial, there remains only to show that (ii) implies (iii). If  we have (ii), define 

T. = {m ~ M :  O(m) n B(0, n) # ~ }, 

let M~ be the disjoint union of the sequence {T.} and define O~(m)= 
O(m) n B(0, n) for m E T. _c M~. The version of a theorem of Grothendieck 
given by Bourgain and Talagrand (see IS] for a proof) says that if F is a 
compact subset of Mt then O|(F) is a relatively weakly compact subset of X. 
Now, we extend 0 ,  so that we obtain an usc compact valued (in the weak 
topology) map O2 also defined on M~ and this is done by defining 

e U . 
n = 1 d ( s , t )  < l /n  

It is an easy consequence of the separation theorem that O2 is usc and compact 
and convex valued in the weak topology. For each finite set of rational 
numbers q, rE . . . .  , rm let M(r , ,  r2 . . . . .  rm) be an m-fold product of M~ and 
define 

tY(rl, r2 . . . .  , rm) : M ( q ,  r2 . . . .  , r,n)-~ P(X) 

by 

W(rl, r2 . . . . .  rm)(h, t2 . . . . .  tin) = ~ riO2(ti). 
i ~ l  

Since the disjoint union T of (M(rl, r 2 . . . . .  rm) } is also a separable 
metric space we are now in a position to assume that W is usc compact valued 
and UteM W(t) is dense in X. Define 

I", = ( t E T :  W(t) n B(0, 2 -" )  ~ ~ }  

and define 

W,(t) = W(t) n/~(0,  2 -"). 

The desired map is 

where 

II  .II p(x) 
n n 
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I] (O/n)(tn) = ~ ~F,(tn). 
n n 
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